Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 131(5): 395-409, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213611

RESUMO

Transthyretin (TTR) amyloidosis (ATTR amyloidosis) is an underdiagnosed and important type of cardiomyopathy and/or polyneuropathy that requires increased awareness within the medical community. Raising awareness among clinicians about this type of neuropathy and lethal form of heart disease is critical for improving earlier diagnosis and the identification of patients for treatment. The following review summarizes current criteria used to diagnose both hereditary and wild-type ATTR (ATTRwt) amyloidosis, tools available to clinicians to improve diagnostic accuracy, available and newly developing therapeutics, as well as a brief biochemical and biophysical background of TTR amyloidogenesis.


Assuntos
Neuropatias Amiloides Familiares/terapia , Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/etiologia , Cardiomiopatias/etiologia , Humanos
3.
Sci Rep ; 6: 25080, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27122057

RESUMO

Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis(®) and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting sparsely populated TTR misfolding intermediates (i.e. monomers), we achieved fibril inhibition at substoichiometric concentrations. We developed an antibody (misTTR) that targets TTR residues 89-97, an epitope buried in the tetramer but exposed in the monomer. Nanomolar misTTR inhibits fibrillogenesis of misfolded TTR under micromolar concentrations. Pan-specific TTR antibodies do not possess such fibril inhibiting properties. We show that selective targeting of misfolding intermediates is an alternative to native state stabilization and requires substoichiometric concentrations. MisTTR or its derivative may have both diagnostic and therapeutic potential.


Assuntos
Anticorpos/imunologia , Pré-Albumina/imunologia , Pré-Albumina/metabolismo , Dobramento de Proteína , Amiloidose/diagnóstico , Amiloidose/terapia , Animais , Imunoterapia/métodos , Ligação Proteica , Coelhos
4.
Amyloid ; 23(2): 86-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26981744

RESUMO

INTRODUCTION: Transthyretin amyloidosis (ATTR amyloidosis) is caused by the misfolding and deposition of the transthyretin (TTR) protein and results in progressive multi-organ dysfunction. TTR epitopes exposed by dissociation and misfolding are targets for immunotherapeutic antibodies. We developed and characterized antibodies that selectively bound to misfolded, non-native conformations of TTR. METHODS: Antibody clones were generated by immunizing mice with an antigenic peptide comprising a cryptotope within the TTR sequence and screened for specific binding to non-native TTR conformations, suppression of in vitro TTR fibrillogenesis, promotion of antibody-dependent phagocytic uptake of mis-folded TTR and specific immunolabeling of ATTR amyloidosis patient-derived tissue. RESULTS: Four identified monoclonal antibodies were characterized. These antibodies selectively bound the target epitope on monomeric and non-native misfolded forms of TTR and strongly suppressed TTR fibril formation in vitro. These antibodies bound fluorescently tagged aggregated TTR, targeting it for phagocytic uptake by macrophage THP-1 cells, and amyloid-positive TTR deposits in heart tissue from patients with ATTR amyloidosis, but did not bind to other types of amyloid deposits or normal tissue. CONCLUSIONS: Conformation-specific anti-TTR antibodies selectively bind amyloidogenic but not native TTR. These novel antibodies may be therapeutically useful in preventing deposition and promoting clearance of TTR amyloid and in diagnosing TTR amyloidosis.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Epitopos/química , Fagocitose , Pré-Albumina/química , Sequência de Aminoácidos , Neuropatias Amiloides Familiares/complicações , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Cardiomiopatias/complicações , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Linhagem Celular , Células Clonais , Humanos , Camundongos , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/patologia , Fagócitos/citologia , Fagócitos/imunologia , Pré-Albumina/imunologia , Agregados Proteicos/imunologia , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
5.
Mol Cancer Ther ; 7(10): 3223-36, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18852126

RESUMO

All four members of the human epidermal growth factor (EGF) receptor (HER) family are implicated in human cancers. Although efficacious in a subset of patients, resistance to single-targeted anti-HER therapy [i.e., cetuximab (Erbitux) and trastuzumab (Herceptin)] is often associated with coexpression of other HER family members. This may be overcome by a HER ligand binding molecule that sequesters multiple EGF-like ligands, preventing ligand-dependent receptor activation. Toward this end, we have combined the HER-1/EGFR and HER-3 ligand binding domains, dimerized with fusion of an Fc fragment of human IgG1. This resulted in a mixture of HER-1/Fc homodimer (HFD100), HER-3/Fc homodimer (HFD300), and HER-1/Fc:HER-3/Fc heterodimer (RB200), also termed Hermodulins. The purified first-generation RB200 bound EGF and neuregulin 1 (NRG1)-beta1 ligands, determined by cross-linking and direct binding studies. The binding affinity for both was approximately 10 nmol/L by dissociation-enhanced lanthanide fluorescence immunoassay using europium (Eu)-labeled ligands. Competition studies with RB200 using Eu-EGF or Eu-NRG1-beta1 revealed that RB200 bound HER-1 ligands, including transforming growth factor-alpha and heparin-binding EGF, and HER-3 ligands NRG1-alpha and NRG1-beta3. RB200 inhibited EGF- and NRG1-beta1-stimulated tyrosine phosphorylation of HER family proteins, proliferation of a diverse range of tumor cells in monolayer cell growth assays, tumor cell proliferation as a single agent and in synergy with tyrosine kinase inhibitors, lysophosphatidic acid-stimulated cell proliferation, and tumor growth in two human tumor xenograft nude mouse models. Taken together, the data reveal that RB200 has the potential to sequester multiple HER ligands and interfere with signaling by HER-1, HER-2, and HER-3.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Dimerização , Sinergismo Farmacológico , Fator de Crescimento Epidérmico/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/química , Ligantes , Camundongos , Neuregulina-1/metabolismo , Fosfosserina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Receptor ErbB-2/química , Receptor ErbB-3/química , Trastuzumab
6.
Bioorg Med Chem Lett ; 16(9): 2357-63, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473009

RESUMO

The synthesis, evaluation, and structure-activity relationships of a series of succinoyl lactam inhibitors of the Alzheimer's disease gamma-secretase are described. Beginning with a screening hit with broad proteinase activity, optimization provided compounds with both high selectivity for inhibition of gamma-secretase and high potency in cellular assays of A beta reduction. The SAR and early in vivo properties of this series of inhibitors will be presented.


Assuntos
Caprolactama/química , Endopeptidases/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Succinatos/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Caprolactama/análogos & derivados , Linhagem Celular , Cães , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Endopeptidases/química , Inibidores Enzimáticos/química , Humanos , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
7.
Curr Pharm Des ; 8(28): 2521-31, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12369937

RESUMO

Alzheimer's disease is an age-related neurodegenerative disease which causes global loss of cognitive function. Drug treatment for Alzheimer's disease has been limited to agents that ameliorate behavioral symptoms but these agents are without effect on disease progression. Rational drug design for the treatment of Alzheimer's disease now seems possible. As a result of major advances in medical research in this area, knowledge of the etiology of Alzheimer's disease is rapidly being understood. This information has uncovered relevant and novel targets for treatment. At the center of the etiological progression of this disease is beta-amyloid. A substantial body of evidence strongly suggests that this small protein is critical to the development of Alzheimer's disease. The beta-amyloid protein is generated by two different proteolytic cleavages. Recently, the proteases responsible for producing the beta-amyloid protein have been identified. The proteases represent viable targets for therapeutic intervention against Alzheimer's disease. In this review, we describe the biological characteristics of the beta-amyloid-forming proteases in the context of pharmaceutical development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Endopeptidases/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...